Research Team for Aerosols and Inhalers (RESPI-LAB)

The team uses comprehensive and unique research equipment for determining the emission efficiency and size distribution of aerosol particles generated in inhalers (including nebulizers, pMDIs, DPIs), nasal pumps, and other atomizing devices.

The team also evaluates the deposition of inhaled aerosol particles in the respiratory system and their effects on the lung surface, including interactions with mucus and pulmonary surfactant (in vitro investigations). In addition to the purely scientific aspect, these works have practical value in evaluating the performance of inhalation devices, developing new engineering solutions for inhalation devices, and comparing the quality of existing inhalation drug products.

The team also offers expertise in evaluating the physicochemical effects of aerosol particles in the environment (PMs) on the respiratory system.

        

Research team members: 

  • Prof. Tomasz Sosnowski – team leader
  • Marcin Odziomek, PhD Eng
  • Agata Dorosz, PhD Eng
  • Katarzyna Jabłczyńska, PhD Eng
  • Katarzyna Dobrowolska, MSc Eng (PhD Candidate)

Cooperating Faculty members: prof. Arkadiusz Moskal; prof. Paweł Sobieszuk; prof. Jakub Gac; Karol Ulatowskim PhD Eng; Katarzyna Kramek-Romanowska PhD Eng

            

RESEARCH EQUIPMENT

  • Malvern® Spraytec laser diffraction spectrometer (100 nm-900 μm)
  • Proveris® automatic trigger for nasal atomizers for Spraytec
  • 2D Laser Doppler Analyzer (Dantec) – determination of the velocity field of aerosol jets
  • ASL 5000 XL („artificial lung”) – programmable simulator of non-stationary airflows
  • Simulator of cough and sneeze
  • Pharmacopial cascade impactors (Andersen, NGI)
  • Laboratory spray dryer (Büchi B-290)
  • Anatomical models of the upper airways (oral, nasal) and bronchial bifurcations
  • Tabletop SEM TM1000 (Hitachi) - up 10 000x magnification + sputtering coater
  • Research equipment enabling analysis of physicochemical interactions between inhaled compounds/particles and pulmonary surfactant (PAT-1M tensiometer, Langmuir-Wilhelmy balance with Micro-BAM, bubble tensiometer Krüss BP-2)

         

Recent publications:

  • Sosnowski T.R. (2024). Towards more precise targeting of inhaled aerosols to different areas of the respiratory system. Pharmaceutics 16: 97. DOI:10.3390/pharmaceutics16010097
  • Dorosz A., Moskal A., Sosnowski T.R. (2023). Dynamics of aerosol generation and flow during inhalation for improved in vitro-in vivo correlation (IVIVC) of pulmonary medicines. Chem. Proc. Eng.: New Frontiers 44(4): e39, DOI: 10.24425/cpe.2023.147398
  • Sosnowski T.R., Wyleziński D., Emeryk A. (2023). Evaluation and mitigation of carbon footprint of medical inhalers. Chem. Eng. Transact. 105, 349-354. DOI:10.3303/CET23105059
  • Sosnowski T.R., Morawska L., Szczepańska J., Szajna E., Vilkotsky A.I., Odziomek M., Sosnowski K. (2023). Size-dependent aerosol penetration through facemasks and respirators (FMRs) during simulated exhalation and cough. Adv. Powder Technol. 34: 104143, DOI: 10.1016/j.apt.2023.104143.
  • Dobrowolska K., Miros M., Sosnowski T.R.  (2023). Impact of natural-based viscosity modifiers of inhalation drugs on the dynamic surface properties of the pulmonary surfactant. Materials 16: 1975, DOI:10.3390/ma16051975
  • Dobrowolska K., Emeryk A., Janeczek K., Krzosa R., Pirożyński M., Sosnowski, T.R.  (2023). Influence of physicochemical properties of budesonide microsuspensions on their expected lung delivery using a vibrating mesh nebulizer.  Pharmaceutics 15: 752, DOI: 10.3390/pharmaceutics15030752
  • Sosnowski T.R. (2023). Aerosols and human health - a multiscale problem. Chem. Eng. Sci. 268: 118407, DOI: 10.1016/j.ces.2022.118407
  • Odziomek M., Ulatowski K., Dobrowolska K., Górniak I., Sobieszuk P., Sosnowski T.R. (2022). Aqueous dispersions of oxygen nanobubbles for potential application in inhalation therapy. Sci. Rep. 12: 12455.  DOI: 10.1038/s41598-022-16720-3
  • Kadota K., Matsumoto K., Uchiyama H., Tobita S., Maeda M., Maki M., Kinehara Y., Tachibana I., Sosnowski T.R., Tozuka Y. (2022). In silico evaluation of particle transport and deposition in the airways of individual patients with chronic obstructive pulmonary disease. Eur. J. Pharm. Biopharm. 174, 10-19. DOI: 10.1016/j.ejpb.2022.03.010
  • Dorosz A., Urbankowski T., Zieliński K., Michnikowski M., Krenke R., Moskal A. (2022). Modeling of inhalation profiles through dry powder inhaler in healthy adults and asthma patients as a prerequisite for further in vitro and in silico studies. J Aerosol Med. Pulm. Drug Deliv. 35, 91-103. DOI: 10.1089/jamp.2021.0021
  • Sosnowski T.R. (2021). Inhaled aerosols: their role in COVID-19 transmission including biophysical interactions in the lungs. Curr. Opin. Coll. Interface Sci. 54:101451. DOI: 10.1016/j.cocis.2021.101451  
  • Sosnowski T.R., Dobrowolska K. (2021). Aerodynamically driven translocation of non-Newtonian fluids: the relevance for intranasal drug delivery. Chem. Eng. Transact. 86, 1207-1212. DOI:10.3303/CET2186202 

           

Recent patents:

  • EP3675941B1. An inhaler for a single-dose of dry powder and a method for adjusting an inhaler for single-dose of dry powder for delivering a specific medicament. Roszczyk P., Sosnowski, T., Moskal A., et al. (21.06.2023)
  • LU501909B1. Capsule inhaler, method for monitoring intake of a substance, computer program and computer program product. Roszczyk P., Sosnowski T., Bujnowski S.,Klucz E., Moskal A., Srutek M.,  Wirwicki M., Wisniewski W., Klucz K. (2.11.2022)